CIRCULATORY SYSTEM
What is the Circulatory System?

- The system of the body responsible for internal transport.

- Composed of the heart, blood vessels, lymphatic vessels, lymph, and the blood.

- The Circulatory Systems is a combination of vessels and muscle that help and control the flow of blood around the body.

- This is known as CIRCULATION.
The Main Parts of the Circulatory System

- The main parts of the Circulatory System include:
 - The Heart
 - Arteries (within the heart also)
 - Veins
 - Capillaries
Your Blood Vessels: Pathway of Circulation

- 3 types of vessels
 - Arteries
 - Capillaries
 - Veins
Artery vs. Vein

Fox, Stuart I.
Human Physiology 4th Brown Publishers
Arteries:
carries blood *Away from* heart

- Large
- Thick-walled, Muscular
- Elastic
- Oxygenated blood
 - Exception Pulmonary Artery
- Carried under great pressure
- Steady pulsating

Arterioles: smaller vessels, enter tissue
Veins:
Carries blood to heart

- Carries blood that contains waste and CO\textsubscript{2}
 - Exception pulmonary vein
- Blood not under much pressure
- **Valves** to prevent much gravity pull

Venules: larger than capillaries
Varicose Veins
Damaged Valves in Veins
Anatomy of the Heart

• The human heart is a muscular pump composed of cardiac muscle that allows for continued rhythmic contraction.

• Cardiac muscle is a involuntary muscle

• It is located in the middle of your chest right behind the sternum and just to the left.

• It is approximately the size of your fist.
At REST, the heart pumps about 5 QUARTS of blood a minute.

During EXTREME EXERTION (exercise) it can pump 40 quarts a minute.
Anatomy of the Heart

• Using the Veterinary Medical Terminology text:
 – Trace Figure 8-3 on page 111.
 – Use Blue and Red to represent veins and arteries.
The Structures of the Heart

Superior Vena Cava
Large vein that brings oxygen-poor blood from the upper part of the body to the right atrium

Pulmonary Veins
Bring oxygen-rich blood from each of the lungs to the left atrium

Pulmonary Valve
Prevents blood from flowing back into the right ventricle after it has entered the pulmonary artery

Tricuspid Valve
Prevents blood from flowing back into the right atrium after it has entered the right ventricle

Inferior Vena Cava
Vein that brings oxygen-poor blood from the lower part of the body to the right atrium

Right Atrium

Aorta
Brings oxygen-rich blood from the left ventricle to the rest of the body

Pulmonary Arteries
Bring oxygen-poor blood to the lungs

Left Atrium

Aortic Valve
Prevents blood from flowing back into the left ventricle after it has entered the aorta

Mitral Valve
Prevents blood from flowing back into the left atrium after it has entered the left ventricle

Left Ventricle

Septum
Protective Layers of the Heart

• While the epicardium forms the outer layer of the heart

• The myocardium forms the middle layer

• The endocardium the innermost layer.
• The coronary arteries - arteries that provide blood to the heart's own cells - travel across the epicardium.

• The muscular myocardium is the thickest layer and the workhorse of the heart.

• The endocardium has a smooth inner surface to allow blood to flow easily through the heart's chambers. The heart's valves are also part of the endocardium.
Anatomy of the Heart

• There are four chambers in the heart - two atria and two ventricles.
Parts of the Heart

• The atria (one is called an atrium):
 – Responsible for receiving blood from the veins leading to the heart.
 – When they contract, they pump blood into the ventricles

• The ventricles:
 – The real workhorses
 – They must force the blood away from the heart with sufficient power to push the blood all the way back to the heart.
• Between the atria and the ventricles are valves

• These are overlapping layers of tissue that allow blood to flow only in one direction.
Assignment: Define each of the valves in the heart.
Valves Defined:

- **Tricuspid valve**: is between the right atrium and right ventricle.

- **Pulmonary or pulmonic valve**: is between the right ventricle and the pulmonary artery.

- **Mitral valve**: is between the left atrium and left ventricle.

- **Aortic valve**: is between the left ventricle and the aorta.
Heart Disease Assignment:

Diseases:
1. Cardiovascular Disease
2. Heart Attack
3. Angina
4. Cardiac Arrest
5. Arteriosclerosis/Atherosclerosis
6. Heart Valve Disease
7. Hypertension Heart Disease
8. High Blood Pressure
9. Coronary Heart Disease
10. Cardiomyopathy

Assignment:
• Research the heart disease
• Include:
 – mechanism of injury/disease
 – signs/symptoms
 – treatment
• BONUS: Rehabilitation
• Create an Informational Flyer about the disease
• Create a Public Service Commercial about disease and prevention.
Requirements:

Poster: (20 points: 5 points each)
- Should include information about disease
- Should include prevention methods
- Should be eye catching
- Creativity

Public Service commercial: (50 points: 10 points each)
- Should be between 2-3 minutes long
- Should include description of disease
- Give ideas for prevention or disease
- Include any facts about disease
- Creativity counts!
- You will need to create a Storyboard including at least 5 squares detailing your commercial
BLOOD

• What is blood made of?

• **Blood is a mixture of cells** and a watery liquid, called **plasma**, that the cells float in.

• **Plasma is about 90 percent water.**
• There are **three kinds of cells** in the blood:
 - Red blood cells
 - White blood cells
 - Platelets

Red blood cells carry oxygen from the lungs throughout the body, **white blood cells help fight infection**, and **platelets help in clotting**.
• **Red blood cells** (also called erythrocytes) are the most numerous, making up 40-45 percent of one's blood, and they give blood its characteristic color.

• Red blood cells are shaped like tiny doughnuts
What is HEMOGLOBIN?

Red blood cells contain several hundred hemoglobin molecules which transport oxygen.

Oxygen binds to heme on the hemoglobin molecule.
- **Hemoglobin** is a special molecule which carries the oxygen that is found in the blood.

- Where there is a lot of oxygen, in the lungs, the hemoglobin molecules loosely bind with oxygen.

- Hemoglobin contains **four iron atoms**
 - Each atom can bind with one molecule of oxygen
 - How much oxygen can they carry?
• In the capillaries, where there is little oxygen, the hemoglobin readily sheds the oxygen it is carrying and allows it to be absorbed by the body's cells.
• What makes our blood RED?

• The iron in hemoglobin is what makes blood red.
Types of Blood

- If the red blood cell had only "A" molecules on it, that blood was called type A.
- If the red blood cell had only "B" molecules on it, that blood was called type B.
- If the red blood cell had a mixture of both molecules, that blood was called type AB.
- If the red blood cell had neither molecule, that blood was called type O.
Transfusions/Donations

• A person with type A blood can donate blood to a person with type A or type AB.
• A person with type B blood can donate blood to a person with type B or type AB.
• A person with type AB blood can donate blood to a person with type AB only.
• A person with type O blood can donate to anyone.
• What happens when different types of blood mix?

• If two different blood types are mixed together, the blood cells may begin to clump together in the blood vessels, causing a potentially fatal situation.

• What would you do in an emergency?