
PLTW Engineering

PLTW Engineering Formula Sheet 2017 (v17.0)

1.0 Statistics	Mode
$\label{eq:mean} \begin{split} \frac{\textit{Mean}}{\mu = \frac{\sum x_i}{N}} & \overline{x} = \frac{\sum x_i}{n} & (1.1b) \\ \hline \mu = \text{population mean} \\ \overline{x} = \text{sample mean} \\ \sum x_i = \text{sum of all data values } (x_1, x_2, x_3, \ldots) \\ N = \text{size of population} \\ n = \text{size of sample} \end{split}$	Place data in ascending order. Mode = most frequently occurring value (1.4) If two values occur with maximum frequency the data set is <i>bimodal</i> . If three or more values occur with maximum frequency the data set is <i>multi-modal</i> .
	Standard Deviation
Median Place data in ascending order. If N is odd, median = central value If N is even, median = mean of two central values N = size of population	$\sigma = \sqrt{\frac{\Sigma(x_i - \mu)^2}{N}}$ (Population) (1.5a) $\overline{s} = \sqrt{\frac{\Sigma(x_i - \overline{x})^2}{n - 1}}$ (Sample) (1.5b) $\overline{\sigma} = \text{population standard deviation}$
Range (1.5)	s = sample standard deviation x_i = individual data value ($x_1, x_2, x_3,$)
$Range = x_{max} - x_{min} $ (1.3)	μ = population mean
x _{max} = maximum data value x _{min} = minimum data value	\bar{x} = sample mean N = size of population n = size of sample
2.0 Probability	
21011020201119	Independent Events
F	$P (A and B and C) = P_A P_B P_C $ (2.3)
$\frac{Frequency}{f_x = \frac{n_x}{n}}$ (2.1)	P (A and B and C) = probability of independent events A and B and C occurring in sequence P_A = probability of event A
f _x = relative frequency of outcome x	
n_x = number of events with outcome x n = total number of events	Mutually Exclusive Events
	$\underline{P(A or B) = P_{A} + P_{B}} $ (2.4)
Binomial Probability (order doesn't matter)	P (A or B) = probability of either mutually exclusive event A or B occurring in a trial P _A = probability of event A
$P_{k} = \frac{n!(p^{k})(q^{n\cdotk})}{k!(n\cdotk)!} \tag{2.2}$	Conditional Probability
P_k = binomial probability of k successes in n trials p = probability of a success	$P(A D) = \frac{P(A) \cdot P(D A)}{P(A) \cdot P(D A) + P(\sim A) \cdot P(D \sim A)} $ (2.5)
q = 1 – p = probability of failure k = number of successes n = number of trials	P (A D) = probability of event A given event D P(A) = probability of event A occurring P(\sim A) = probability of event A not occurring P(D \sim A) = probability of event D given event A did not occur

© 2016 Project Lead The Way, Inc. PLTW Engineering Formula Sheet 2016

6.0 Conversions			
Mass/Weight (6.1) 1 kg = 2.205 lb_m 1 slug = 32.2 lb_m 1 ton = 2000 lb 1 lb = 16 oz	Area (6.4) 1 acre = 4047 m ² = 43,560 ft ² = 0.00156 mi ² Volume (6.5)	Pressure (6.8) 1 atm = 1.01325 bar = 33.9 ft H_2O = 29.92 in. Hg = 760 mm Hg = 101,325 Pa	Rotational Speed (6.11) 1 Hz = 2π rad/sec = 60 rpm
Length (6.2) 1 m = 3.28 ft 1 km = 0.621 mi 1 in. = 2.54 cm 1 mi = 5280 ft 1 yd = 3 ft	$1L = 0.264 \text{ gal}$ $= 0.0353 \text{ ft}^{3}$ $= 33.8 \text{ fl oz}$ $1\text{mL} = 1 \text{ cm}^{3} = 1 \text{ cc}$ $Temperature Unit$ Equivalents (6.6) *Use equation in section 9.0 to convert	= 14.7 psi 1psi = 2.31 ft of H ₂ O Power (6.9) 1 W = 3.412 Btu/h = 0.00134 hp = 14.34 cal/min = 0.7376 ft·lb _f /s	7.0 Defined Units 1 J = 1 N·m 1 N = 1 kg·m / s ² 1 Pa = 1 N / m ² 1 V = 4 W (A
<i>Time (6.3)</i> 1 d = 24 h 1 h = 60 min 1 min = 60 s 1 yr = 365 d	$\Delta 1 \text{ K} = \Delta 1 ^{\circ}\text{C}$ = $\Delta 1.8 ^{\circ}\text{F}$ = $\Delta 1.8 ^{\circ}\text{R}$ Force (6.7) 1 N = 0.225 lb 1 kip = 1,000 lb	$\begin{array}{ll} 1 \ \text{hp} &= 550 \ \text{ft} \cdot \text{lb/sec} \\ \hline \textbf{\textit{Energy}} \ \textbf{(6.10)} \\ 1 \ \text{J} &= 0.239 \ \text{cal} \\ &= 9.48 \ \text{x} \ 10^{-4} \ \text{Btu} \\ &= 0.7376 \ \text{ft} \cdot \text{lb}_{\text{f}} \\ 1 \ \text{kW} \ \text{h} &= 3,600,000 \ \text{J} \end{array}$	1 V = 1 W / A 1 W = 1 J / s $1 \Omega = 1 V / A$ $1 Hz = 1 s^{-1}$ $1 F = 1 A \cdot s / V$ $1 H = 1 V \cdot s / V$

8.0 SI Prefixes

Numbers Less Than One			
Power of 10	Decimal Equivalent	Prefix	Abbreviation
10 ⁻¹	0.1	deci-	d
10 ⁻²	0.01	centi-	С
10 ⁻³	0.001	milli-	m
10 ⁻⁶	0.000001	micro-	μ
10 ⁻⁹	0.00000001	nano-	n
10 ⁻¹²		pico-	р
10 ⁻¹⁵		femto-	f
10 ⁻¹⁸		atto-	а
10 ⁻²¹		zepto-	z
10 ⁻²⁴		yocto-	у

Ν	Numbers Greater Than One		
Power of 10	Whole Number Equivalent	Prefix	Abbreviation
10 ¹	10	deca-	da
10 ²	100	hecto-	h
10 ³	1000	kilo-	k
10 ⁶	1,000,000	Mega-	М
10 ⁹	1,000,000,000	Giga-	G
10 ¹²		Tera-	Т
10 ¹⁵		Peta-	Р
10 ¹⁸		Exa-	ш
10 ²¹		Zetta-	Z
10 ²⁴		Yotta-	Y

9.0 Equations

Mass and Weight		
m = VD _m	(9.1)	
W = mg	(9.2)	
$W=VD_w$	(9.3)	
$V = volume$ $D_m = mass density$ $m = mass$ $D_w = weight density$ $W = weight$ $g = acceleration due to gravity$		

Temperature

remperature	
$T_{K} = T_{C} + 273$	(9.4)
$T_{R} = T_{F} + 460$	(9.5)
$T_{F} = \frac{9}{5}T_{c} + 32$	(9.6a)
$T_{\rm C} = \frac{T_{\rm F}-32}{1.8}$	(9.6b)
$T_{\rm C} = \frac{1}{1.8}$	(9.6b)
T_{K} = temperature in T_{c} = temperature in	

- $T_{\rm C}$ = temperature in Celsius
- T_R = temperature in Rankin
- T_F = temperature in Fahrenheit

Force and MomentF = ma (9.7a) $M = Fd_{\perp}$ (9.7b)F = forcem = massa = accelerationM = moment d_{\perp} = perpendicular distance**Equations of Static Equilibrium** $\Sigma F_x = 0$ $\Sigma M_P = 0$ (9.8) $F_x = force$ in the x-direction $F_y = force$ in the y-direction $M_P = moment$ about point P

3

© 2016 Project Lead The Way, Inc. PLTW Engineering Formula Sheet 2016

IED POE DE CEA AE ES/BE CIM EDD

9.0 Equations (Continued)

(9.9)

Energy: Work

W = work

 F_{\parallel} = force parallel to direction of displacement d = displacement

Power $P = \frac{E}{t} = \frac{W}{t}$ (9.10) $\mathsf{P}=\tau\,\omega$ (9.11) P = powerE = energy W = workt = time $\tau = torque$ ω = angular velocity

EfficiencyEfficiency (%) =
$$\frac{P_{out}}{P_{in}} \cdot 100\%$$
 (9.12) P_{out} = useful power output
 P_{in} = total power input

U = mgh	(9.13)
U = potential energy m =mass g = acceleration due to g h = height	ravity

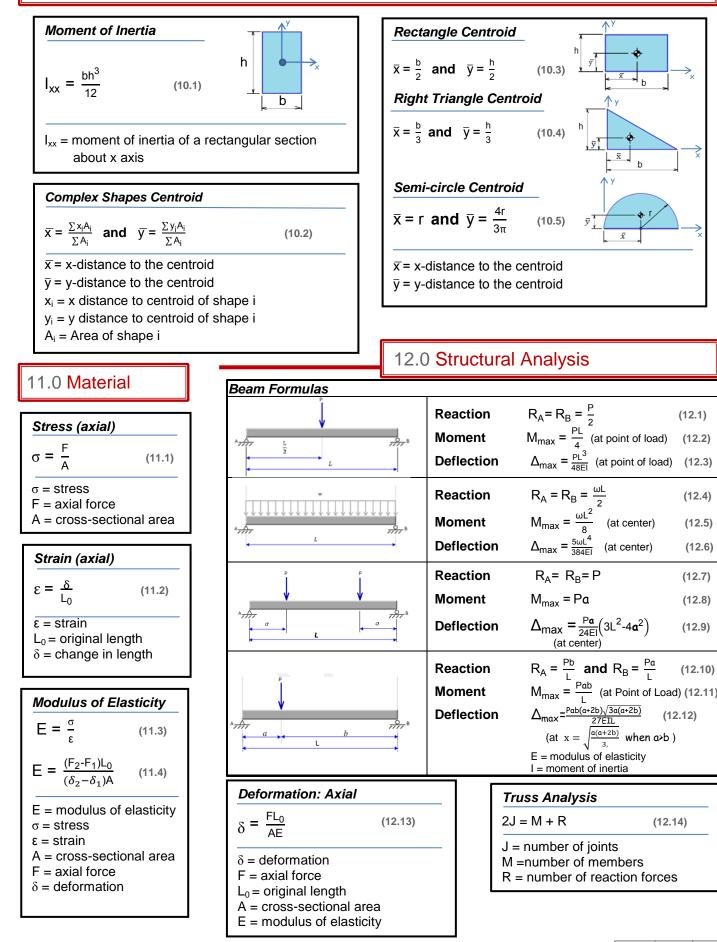
Energy: Kinetic	
$K = \frac{1}{2} mv^2$	(9.14)
K = kinetic energy m = mass v = velocity	

Energy: Thermal $\Delta \mathbf{Q} = \mathbf{mc} \Delta \mathbf{T}$

 ΔQ = change in thermal energy m = mass c = specific heat ΔT = change in temperature

(9.15)

 $\tau = torque$ F = force


© 2016 Project Lead The Way, Inc. PLTW Engineering Formula Sheet 2016

Fluid Mechanics		
$p = \frac{F}{A}$	(9.16)	
$\frac{V_1}{T_1} = \frac{V_2}{T_2}$ (Charles' Law)	(9.17)	
$\frac{p_1}{T_1} = \frac{p_2}{T_2} (Gay-Lussanc's$	Law) (9.18)	
$p_1V_1 = p_2V_2$ (Boyle's La	aw) (9.19)	
Q = Av	(9.20)	
$A_1v_1 = A_2v_2$	(9.21)	
P = Qp	(9.22)	
absolute pressure = gau + atmospheric pi		
p = absolute pressure $F = force$ $A = area$ $V = volume$ $T = absolute temperature$ $Q = flow rate$ $v = flow velocity$ $P = power$		
Mechanics		
$\overline{s} = \frac{d}{t}$	(9.24)	
$\overline{\mathbf{v}} = \frac{\Delta \mathbf{d}}{\Delta t}$	(9.25)	
$a = \frac{v_f - v_i}{t}$	(9.26)	
$X = \frac{v_i^2 \sin(2\theta)}{-g}$	(9.27)	
$v = v_i + at$	(9.28)	
$d = d_i + v_i t + \frac{1}{2} a t^2$	(9.29)	
$v^2 = v_i^2 + 2a(d - d_i)$	(9.30)	
$\tau = dFsin\theta$	(9.31)	
$ \overline{s} = \text{average speed} $ $ \overline{v} = \text{average velocity} $ $ v = \text{velocity} $ $ v_i = \text{initial velocity (t =0)} $ $ a = \text{acceleration} $ $ X = \text{range} $ $ t = \text{time} $ $ \Delta d = \text{change in displacement} $ $ d = \text{distance} $ $ d_i = \text{initial distance (t=0)} $ $ g = \text{acceleration due to gravity} $ $ \theta = \text{angle} $		

Electricity	
Ohm's Law	
V = IR	(9.32)
P = IV	(9.33)
R_T (series) = $R_1 + R_2 + \cdots$	+ R _n ^(9.34)
R_{T} (parallel) = $\frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots + \frac{1}{R_{n}}}$	(9.35)
Kirchhoff's Current Law	
$I_{T} = I_{1} + I_{2} + \dots + I_{n}$ or $I_{T} = \sum_{k=1}^{n} I_{k}$	(9.36)
Kirchhoff's Voltage Law	
$V_{T} = V_{1} + V_{2} + \dots + V_{n}$ or $V_{T} = \sum_{k=1}^{n} V_{t}$	_k (9.37)
$V = voltage$ $V_{T} = total voltage$ $I = current$ $I_{T} = total current$ $R = resistance$ $R_{T} = total resistance$ $P = power$	
Thermodynamics	
$P = Q' = AU\Delta T$	(9.38)
$P = Q' = \frac{\Delta Q}{\Delta t}$	(9.39)
$U = \frac{1}{R} = \frac{k}{L}$	(9.40)
$P = \frac{kA\Delta T}{I}$	(9.41)
$A_1 v_1 = A_2 v_2$	(9.42)
$P_{net} = \sigma Ae(T_2^4 - T_1^4)$	(9.43)
$k = \frac{PL}{A\Delta T}$	(9.44)
$ \begin{array}{l} \label{eq:product} P = rate of heat transfer \\ Q = thermal energy \\ A = area of thermal conductivity \\ U = coefficient of heat conductivity \\ (U-factor) \\ \Delta T = change in temperature \\ \Delta t = change in time \\ R = resistance to heat flow (R-value) \\ k = thermal conductivity \\ v = velocity \\ P_{net} = net power radiated \\ \sigma = 5.6696 \times 10^{-8} \frac{W}{m^2 \cdot K^4} \\ e = emissivity constant \\ L = thickness \\ T_1, T_2 = temperature at time 1, time 2 \\ \end{array} $	

POE 4 DE 4 AE 4 CIM 4

10.0 Section Properties

© 2016 Project Lead The Way, Inc. PLTW Engineering Formula Sheet 2016 (12.1)

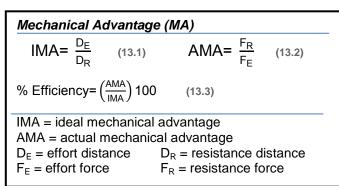
(12.2)

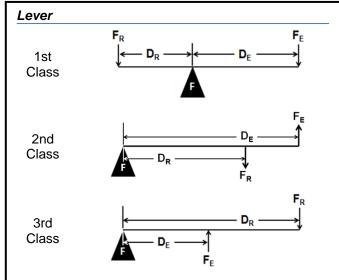
(12.3)

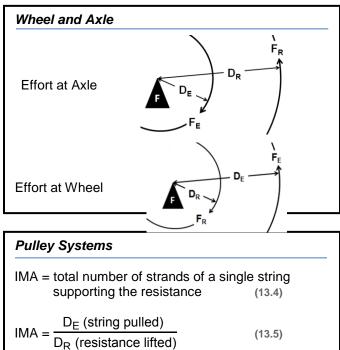
(12.4)

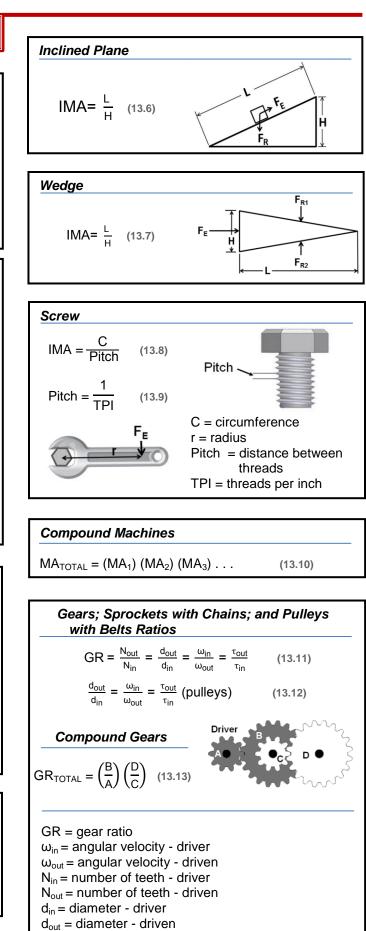
(12.5)

(12.6)

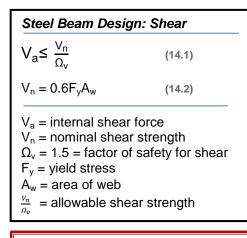

(12.7)


(12.8)


(12.9)


POE 5 AE 5 CEA 4

13.0 Simple Machines



 $\tau_{in} = torque - driver$ $\tau_{out} = torque - driven$

14.0 Structural Design

15.0 Storm Water Runoff

Storm Water Drainage		
$Q = C_f CiA$	(15.1)	
$C_{c} = \frac{C_{1}A_{1} + C_{2}A_{2} + \cdots}{A_{1} + A_{2} + \cdots}$	(15.2)	
$Q = \text{peak storm water runoff rate (ft3/s)}$ $C_{f} = \text{runoff coefficient adjustment}$ factor $C = \text{runoff coefficient}$ $i = \text{rainfall intensity (in./h)}$ $A = \text{drainage area (acres)}$		

Runoff Coefficient Adjustment Factor			
Return			
Period Cf			
1, 2, 5, 10 1.0			
25	1.1		
50 1.2			
100 1.25			

Steel Beam Design	: Moment
$M_a \le \frac{M_n}{\Omega_b}$	(14.3)
$M_n = F_y Z_x$	(14.4)
$\begin{split} & M_{a} = \text{internal bending} \\ & M_{n} = \text{nominal momen} \\ & \Omega_{b} = 1.67 = \text{factor of} \\ & \text{bending mor} \\ & F_{y} = \text{yield stress} \\ & Z_{x} = \text{plastic section n} \\ & \text{neutral axis} \\ & \frac{M_{n}}{\Omega_{b}} \\ & = \text{allowable bend} \end{split}$	nt strength safety for ment nodulus about
Rational Method Ru	
Categorized by Surfa	
Forested	0.059—0.2
Asphalt	0.7—0.95
Brick	0.7—0.85
Concrete	0.8—0.95
Shingle roof	0.75—0.95
Lawns, well draine	ed (sandy soil)
Up to 2% slope	0.05—0.1
2% to 7% slope	0.10—0.15
Over 7% slope	0.15—0.2
Lawns, poor drain	age (clay soil)
Up to 2% slope	0.13—0.17
2% to 7% slope	0.18—0.22
Over 7% slope	0.25—0.35
Driveways,	0.75—0.85
Categorized	by Use
Farmland	0.05—0.3
Pasture	0.05—0.3
Unimproved	0.1—0.3
Parks	0.1—0.25
Cemeteries	0.1—0.25
Railroad yard	0.2-0.40
Playgrounds	0.2-0.35
Business D	
Neighborhood	0.5-0.7
City (downtown)	0.7—0.95
Residential	
Single-family	0.3—0.5
Multi-plexes,	0.4—0.6
Multi-plexes,	0.6—0.75
Suburban	0.25-0.4
Apartments,	0.5-0.7
Industr	
Light	0.5-0.8
Heavy	0.6-0.9

Spread Footing Design

$q_{net} = q_{allowable}$ - $p_{footing}$	(14.5)
$p_{footing} = t_{footing} \cdot 150 \frac{1b}{ft^3}$	(14.6)
$q = \frac{P}{A}$	(14.7)

16.0 Water Supply

Hazen-Williams Formula

$h_{\rm f} = \frac{10.44 LQ^{1.85}}{C^{1.85} d^{4.8655}}$	(16.1)
h_f = head loss due t (ft of H ₂ O) L = length of pipe (f Q = water flow rate C = Hazen-Williams d = diameter of pipe	t) (gpm) s constant

Dynamic Head

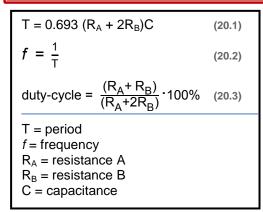
dynamic head = static head - head loss (16.2) static head = change in elevation between source and discharge

17.0 Heat Loss/Gain

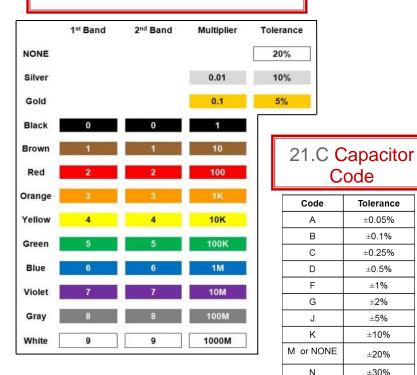
Heat Loss/Gain	
Q′ = AU∆T	(17.1)
$U = \frac{1}{R}$	(17.2)
O - thermal energy	

Q – mermai energy
A = area of thermal conductivity
U = coefficient of heat
conductivity (U-factor)
ΔT = change in temperature
R = resistance to heat flow (R-
value)

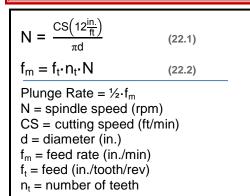
18.0 Hazen-Williams Constants


Pipe Material	Typical Range	Clean, New Pipe	Typical Design Value
Cast Iron and Wrought Iron	80 - 150	130	100
Copper, Glass or Brass	120 - 150	140	130
Cement lined Steel or Iron		150	140
Plastic PVC or ABS	120 - 150	140	130
Steel, welded and seamless or interior riveted	80-150	140	100

19.0 Equivalent Length of (Generic) Fittings


0		Pipe Size										
Screwed	Fittings	1/4	3/8	1/2	3/4	1	1 1/4	1 1⁄2	2	2 ½	3	4
	Regular 90 degree	2.3	3.1	3.6	4.4	5.2	6.6	7.4	8.5	9.3	11.0	13.0
Elbows	Long radius 90 degree	1.5	2.0	2.2	2.3	2.7	3.2	3.4	3.6	3.6	4.0	4.6
	Regular 45 degree	0.3	0.5	0.7	0.9	1.3	1.7	2.1	2.7	3.2	4.0	5.5
Tees	Line Flow	0.8	1.2	1.7	2.4	3.2	4.6	5.6	7.7	9.3	12.0	17.0
Tees	Branch Flow	2.4	3.5	4.2	5.3	6.6	8.7	9.9	12.0	13.0	17.0	21.0
Return	Regular 180 degree	2.3	3.1	3.6	4.4	5.2	6.6	7.4	8.5	9.3	11.0	13.0
	Globe	21.0	22.0	22.0	24.0	29.0	37.0	42.0	54.0	62.0	79.0	110.0
	Gate	0.3	0.5	0.6	0.7	0.8	1.1	1.2	1.5	1.7	1.9	2.5
Valves	Angle	12.8	15.0	15.0	15.0	17.0	18.0	18.0	18.0	18.0	18.0	18.0
	Swing Check	7.2	7.3	8.0	8.8	11.0	13.0	15.0	19.0	22.0	27.0	38.0
Strainer			4.6	5.0	6.6	7.7	18.0	20.0	27.0	29.0	34.0	42.0

El a mana d										Pipe	Size							
Flanged	Fittings	1/2	3/4	1	1 1/4	1 1/2	2	2 ½	3	4	5	6	8	10	12	14	16	18
	Regular 90 degree	0.9	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	14.0	17.0	18.0	21.0	23.0
Elbows	Long radius 90	1.1	1.3	1.6	2.0	2.3	2.7	2.7	3.4	4.2	5.0	5.7	7.0	8.0	9.0	9.4	10.0	11.0
	Regular 45 degree	0.5	0.6	0.8	1.1	1.3	1.7	2.0	2.5	3.5	4.5	5.6	7.7	9.0	11.0	13.0	15.0	16.0
Tees	Line Flow	0.7	0.8	1.0	1.3	1.5	1.8	1.9	2.2	2.8	3.3	3.8	4.7	5.2	6.0	6.4	7.2	7.6
Tees	Branch Flow	2.0	2.6	3.3	4.4	5.2	6.6	7.5	9.4	12.0	15.0	18.0	24.0	30.0	34.0	37.0	43.0	47.0
Return	Regular 180 degree	0.9	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	14.0	17.0	18.0	21.0	23.0
Bends	Long radius 180	1.1	1.3	1.6	2.0	2.3	2.7	2.9	3.4	4.2	5.0	5.7	7.0	8.0	9.0	9.4	10.0	11.0
	Globe	38.0	40.0	45.0	54.0	59.0	70.0	77.0	94.0	120.0	150.0	190.0.	260.0	310.0	390.0			
Valvaa	Gate						2.6	2.7	2.8	2.9	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2
Valves	Angle	15.0	15.0	17.0	18.0	18.0	21.0	22.0	285.0	38.0	50.0	63.0	90.0	120.0	140.0	160.0	190.0	210.0
	Swing Check	3.8	5.3	7.2	10.0	12.0	17.0	21.0	27.0	38.0	50.0	63.0	90.0	120.0	140.0			


20.0 555 Timer Design

21.B Resistor Color Code

22.0 Speeds and Feeds

21.A Boolean Algebra

Boolean The	eorems	Cor
X• 0 = 0	(21.1)	X +
X•1 = X	(21.2)	X +
X∙X=X	(21.3)	X +
X • X =0	(21.4)	X +
X + 0 = X	(21.5)	
X + 1 = 1	(21.6)	Del
X + X = X	(21.7)	XY
$X + \overline{X} = 1$	(21.8)	X+
$\overline{\overline{X}} = X$	(21.9)	Co
₹ = X	(21.9)	Co X•1

heorems	Consensus Th	neorems
(21.1)	$X + \overline{X}Y = X + Y$	(21.16)
(21.2)	$X + \overline{X}\overline{Y} = X + \overline{Y}$	(21.17)
(21.3)	$\overline{X} + XY = \overline{X} + Y$	(21.18)
(21.4)	$\overline{X} + X\overline{Y} = \overline{X} + \overline{Y}$	(21.19)
(21.5)		
(21.6)	DeMorgan's 7	heorems
(21.7)	$\overline{XY} = \overline{X} + \overline{Y}$	(21.20)
(21.8)	$\overline{X+Y} = \overline{X} \bullet \overline{Y}$	(21.21)
(21.8) (21.9)	$\overline{X+Y} = \overline{X} \bullet \overline{Y}$ Commutative	
. ,		
. ,	Commutative	Law
. ,	Commutative $X \bullet Y = Y \bullet X$ $X + Y = Y + X$	Law (21.10)
(21.9)	$CommutativeX \bullet Y = Y \bullet XX + Y = Y + X$	Law (21.10)

Distributive Law	
X(Y+Z) = XY + XZ	(21.14)
(X+Y)(W+Z) = XW+XZ+YW+YZ	(21.15)

23.0 G&M Codes

Code

Code

А

В

С

D

F

G

J

κ

Ν Q

S

т

Ζ

Tolerance

±0.05%

±0.1%

±0.25%

±0.5%

±1%

±2%

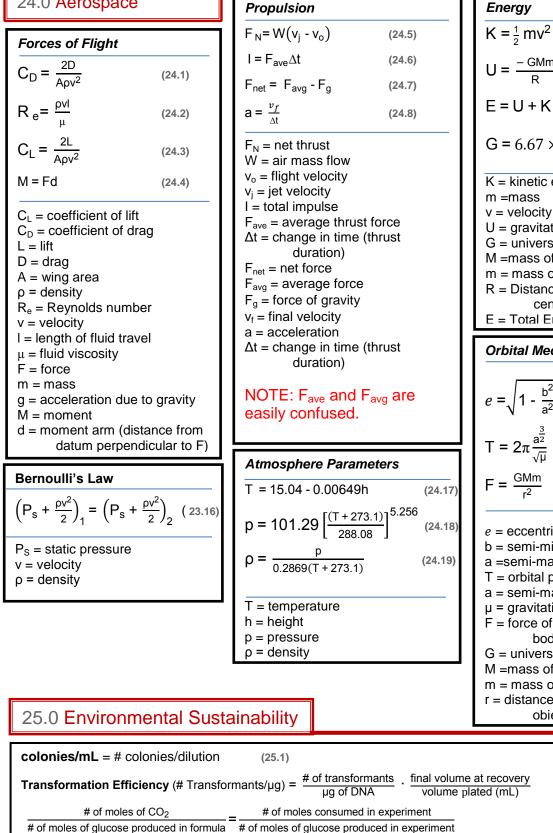
±5%

±10%

±20% ±30%

-10%, +30%

-20%, +50%


-10%, +50%

-20%, +80%

G00 = Rapid Traverse	(23.1)
G01 = Straight Line Interpolation	(23.2)
G02 = Circular Interpolation (clockwise)	(23.3)
G03 = Circular Interpolation (c-clockwise)	(23.4)
G04 = Dwell (wait)	(23.5)
G05 = Pause for user intervention	(23.6)
G20 = Inch programming units	(23.7)
G21 = Millimeter programming units	(23.8)
G80 = Canned cycle cancel	(23.9)
G81 = Drilling cycle	(23.10)
G82 = Drilling cycle with dwell	(23.11)
G90 = Absolute Coordinates	(23.12)
G91 = Relative Coordinates	(23.13)
M00 = Pause	(23.14)
M01 = Optional stop	(23.15)
M02 = End of program	(23.16)
M03 = Spindle on	(23.17)
M05 = Spindle off	(23.18)
M06 = Tool change	(23.19)
M08 = Accessory # 1 on	(23.20)
M09 = Accessory # 1 off	(23.21)
M10 = Accessory # 2 on	(23.22)
M11 = Accessory # 2 off	(23.23)
M30 = Program end and reset	(23.24)
M47 = Rewind	(23.25)

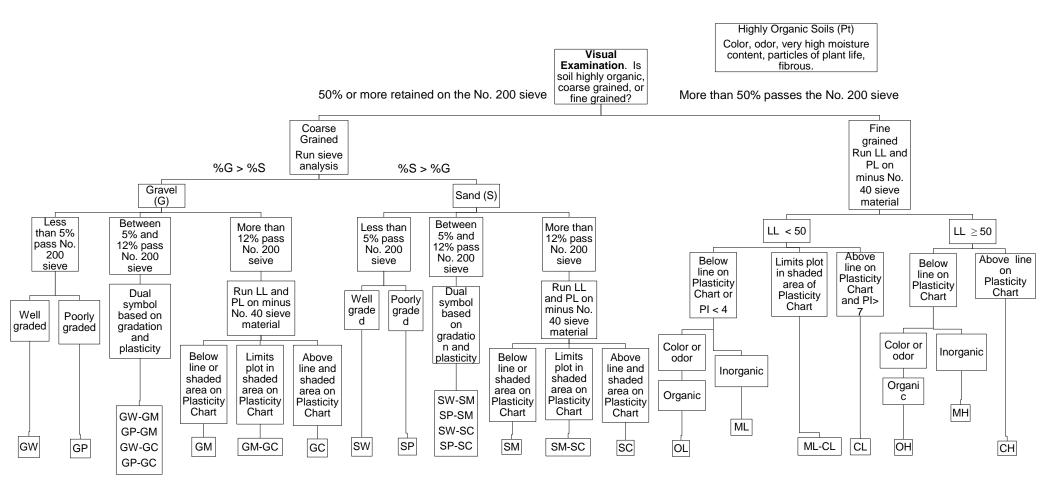
v17.0

24.0 Aerospace

(24.9) $U = \frac{-GMm}{R}$ (24.10) $E = U + K = -\frac{GMm}{2R}$ (24.11) $G = 6.67 \times 10^{-11} \frac{m^3}{kg \times s^2}$ (24.12) K = kinetic energyU = gravitational potential energy G = universal gravitation constant M =mass of central body m = mass of orbiting object R = Distance center main body to center of orbiting object E = Total Energy of an orbit **Orbital Mechanics**

$$e = \sqrt{1 - \frac{b^2}{a^2}}$$
 (24.13)

T =
$$2\pi \frac{a^{\frac{3}{2}}}{\sqrt{\mu}} = 2\pi \frac{a^{\frac{3}{2}}}{\sqrt{GM}}$$
 (24.14)


$$F = \frac{GMm}{r^2}$$
(24.15)

e = eccentricity
b = semi-minor axis
a =semi-major axis
T = orbital period
a = semi-major axis
µ = gravitational parameter
F = force of gravity between two
bodies
G = universal gravitation constant
M =mass of central body
m = mass of orbiting object
r = distance between center of two
obiects

colonies/mL = # colonies/dilution	(25.1)	
Transformation Efficiency (# Transfor	mants/ μ g) = $\frac{\text{# of transformants}}{\mu g \text{ of DNA}} \cdot \frac{\text{final volume at recov}}{\text{volume plated (mL)}}$	rery .) (25.2)
# of moles of CO ₂	# of moles consumed in experiment	(25.2)
# of moles of glucose produced in formula	# of moles of glucose produced in experiment	(25.3)
Economic Growth = $\frac{\text{GDP}_2 - \text{GDP}_1}{\text{GDP}_1}$	(25.4)	
$R_f = \frac{\text{distance the substance travels}}{\text{distance the solvent travels}}$	(25.5)	
GDP = gross domestic product R _f = retention factor		

ES **4** AE 6

26.0 USCS Soil Classification Chart

