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What is Rotational Motion?

Up until now, we have treated everything as if it were a either a
point or a shape, but we would find its center of mass,
and then pretend it acted like a point at its center of mass.

Continuing with our thread of starting simple and then layering
on more reality, it is now time to address the fact that things
also rotate - and many interesting applications arise from this.

What are some types of rotating objects and how are they
important to society?



What is Rotational Motion?

The list is endless.
Here's some examples:

« Turbine generators that changes mechanical energy into
electrical energy and supply electricity to businesses and
homes.

» Helicopter blades that lift the helicopter into the air.

e Electric motors that power cars, circular saws and vacuum
cleaners.

e Swivel chairs.

e Curve balls thrown by baseball pitchers.

e Automobile and truck tires that propel them down the road.

What is a common feature of these examples?



AXxis of Rotation

They are all rotating about a line somewhere within the object
called the axis of rotation.

We're also going to assume that all these objects are rigid
bodies, that is, they keep their shape and are not deformed in
any way by their motion.

Here's a sphere rotating about
its axis of rotation - the vertical
red line.

Does the axis of rotation have
to be part of the rigid body?

"Rotating Sphere". Licensed under Creative Commons Attribution-Share
Alike 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/
File:Rotating_Sphere.gif#mediaviewer/File:Rotating_Sphere.gif



AXxis of Rotation

No - if you were to spin this donut around its center, the axis of
rotation would be in the donut hole, pointing out of the page.

"Chocolate dip,2011-11-28" by Pbj2199 - Own work. Licensed under
Creative Commons Attribution-Share Alike 3.0 via Wikimedia
Commons - http://commons.wikimedia.org/wiki/File:Chocolate_dip,
2011-11-28.jpg#mediaviewer/File:Chocolate_dip,2011-11-28.jpg



Angular Displacement

There are several theories why a circle has 360 degrees.
Here's a few - if you're interested, there's a lot of information
on the web.

Some people believe it stems from the ancient Babylonians
who had a number system based on 60 instead of our base 10
system.

Others track it back to the Persian or biblical Hebrew calendars
of 12 months of 30 days each.

But - it has nothing to do with the actual geometry of the circle.
There is a more natural unit - the radian.



Angular Displacement

Let's look at this circle and assume it's rotating about its middle
- so the axis of rotation is pointing out of the board.

B
;\ Start with a piece of the circle at
Vv point A. As the circle rotates
counterclockwise, the piece of

d ” A the circle reaches point B.



Angular Displacement

swept out an angle 6. We can
also say that the angle 6
[ A "subtends" an arc length of s.

r

The point traveled a distance of s
B ’\ along the circumference, and
S
r

Note that the points A and B are
always at the same distance, r,
from the axis of rotation. That's
what it means to be a circle!



Angular Displacement

We will now define the angle of rotation, 0, as the ratio of the
arc length, s, to the radius of the circle. Can you see how this
IS @ much more natural definition of the angle of rotation then
basing it on an old calendar or arbitrary numbering system?

S
B 0 = .
S
v We will call this angle

fa A of rotation, 0, the
% anqgular displacement.

Rotational angles are now defined
in geometric terms - as the ratio of
an arc length and the radius of the
circle.



Radian

Angular displacement is unit less since it is the ratio of two
distances. But, we will say that angular displacement is
measured in radians. Let's relate this to concepts that we're
pretty familiar with.

We know degrees, and we know that when a point on a circle
rotates and comes back to the same point, it has performed one

revolution - we start at point A, and rotate until we come back to
point A.

B
S
What distance, s, was covered?

How many degrees were swept
by this full rotation?



Radian

The point moved around the entire circumference, so it traveled
21ir while an angle of 360° was swept through. Using the angular
displacement definition:

0=360° =5 = 2" _ 2 rvadians
4 r
360° = 2z radians
0
1 radian = 360 =57.3°
27



Radian

When an object makes one complete revolution, it sweeps out an
angle of 360°or 21T radians.

1 radian = 57.3°
The radian is frequently abbreviated as rad.

You have to be careful about the settings on your calculator. Up
until now, you probably just had angles set for degrees.

You need to set your calculator for radians. Please ask a
classmate or your teacher for help on this.



1 What is the angle inside a circle, in radians, that
subtends an arc length of 0.25 m? The radius of the
circle is 5.0 m.

Answer



2 What is the value of 11/2 radians in degrees?

A (o
B 450
C 900

D 1800

Answer



3 What is the angular displacement for an arc length (s)
that is equal to the radius of the circular rigid body?

A 0.5 rad
B 1.0 rad
C 0.5mrad =
D 1.0 1 rad g



4 A record spins 4 times around its center (4 revolutions).
How many radians did it pass?

A T1rrad
B 21 rad
C 4mrad

D 8t rad

Answer



5 A circular hoop of radius 0.86 m rotates 11/3 rad about its
center. A small bug is on the hoop - what distance does it
travel (arc length) during this rotation?

Answer



Angular Displacement

Something interesting - look
at the three concentric
circles drawn on the rigid
disc, the radii r;, arc lengths
si, and the points A; and B..

As the disk rotates, each
point A; moves to point B,
covering the SAME angle 6,
but covering a different arc
length s;.

Thus, all points on a rotating rigid disc move through the same
angle, 6, but different arc lengths s;, and different radlii, r..



Angular Displacement

Since 0 is constant for every
point and describes
something very fundamental
about the rotating disc, it has
been given a special name -
angular displacement.




Angular Displacement

We're now in a position to relate angular motion to linear motion.
Linear motion has been covered in the Kinematics section of this
course.

The radian is now defined. Angular Displacement is defined.

An object at point A rotates to point B4, covering a linear
displacement of s; and an angular displacement of 6; similarly

for points A, and As. .
B \

0

—




Angular Displacement

Using the definition of the radian for these three points we show how
the linear displacement any point on the disc increases directly as
the distance of the point from the axis of rotation (its radius).

The angular displacement, 8, remains the same for a constant
rotation for all points on the disc.

6="2
v

s=r@
s, =r0

s, =10

s, =10




6 The following are properties of angular displacement, 0,
and linear displacement, s. Select two answers.

A 0, for points on a rotating object, depends on their
distance from the axis of rotation.

B 0, for points on a rotating object, does not depend
on their distance from the axis of rotation.

C The linear displacement, for points on a rotating
object, depends on their distance from the axis of
roation.

Answer

D The linear displacement, for points on a rotating
object, does not depend on their distance from the
axis of roation.



/ There are two people on a merry go round. Person A is
2.3 m from the axis of rotation. Person B is 3.4 m from
the axis of rotation. The merry go round moves through
an angular displacement of /4. What linear
displacement (arc length) is covered by both people?
Compare and contrast these motions.

Answer



Other Angular Quantities

Angular displacement is now related to Linear displacement.

We also spent time earlier in this course working on Kinematics
problems with linear displacement.

Let's continue with angular motion. What other quantities
played a key role in linear motion?

Velocity and Acceleration which were
defined as:
Ax _Av

y=— a

At At



Other Angular Quantities

Define Angular Velocity as the change in angular displacement
over time.
AG
o=—
At
Define Angular Acceleration as the change in angular velocity
over time.
Aw
o =—
At
*Note™ The Greek letter equivalents of "v" and "a" were taken
for the angular equivalents of the linear motion variables for

our notation.



Other Angular Quantities

Since w and a are both related to 6, and 6 is the same for all
points on a rotating rigid body, w and a are also the same for all
points on a rotating rigid body.

But the same is not true for linear velocity and acceleration.

Let's relate the linear and angular velocity and acceleration to
their angular equivalents.



Angular and Linear Velocity

Start with angular velocity, and substitute in the linear
displacement for the angular displacement.

AY
A _
_AO (f”} r is constant, so move

At At it outside the A
1As 1
O=——=—V
r At r
V=ro This confirms what you feel on a merry

go round - the further away from the
center you move, the faster you feel
you're going - the linear velocity!



Angular and Linear Acceleration

Start with angular acceleration, and substitute in the linear
velocity for the angular velocity.

Please work with your group and derive the relationship
between angular and linear acceleration. Then move the
screen below to check your work.

v

A
AYY (l‘] r is constant, so move

“T T Ar it outside the A
1Ay 1

aQ=——=—a
r At r

a=ra



Angular and Linear Quantities

Summary
Angular Linear Relationship
Displacement g g ¢ =10
Velocit A As
) = — = — —_—
y A V=1 [ T
Acceleration _Aw _Av _
e T a=ra




Angular Velocity sign

We're familiar with how to assign positive and negative values to
displacement. Typically if you move to the right or up, we give that a
positive displacement (of course, this is arbitrary, but it's a pretty
standard convention).

How do we assign a "sign" B

for angular displacement, S
velocity or acceleration? Vv

Does "right" or "up" work 0 A
with rotational motion? Does r

it work with a circle?



Angular Velocity sign

Not really. Not at all.

From your math classes, you know that the horizontal axis through a
circle is labeled as 0°, and angles are measured in a counter
clockwise direction.

Once we agree on that, let's B
look at the definition of S
angular velocity: V

2 A

a0

=
At



Angular Velocity sign

As the disc rotates in a counter clockwise fashion, 6 increases, so
AB is positive. Since At is also positive, AB/At must be positive.

Y

a =
At

Thus, Counter clockwise rotations result in a positive w.

Pak



8 Explain why a disc that rotates clockwise leads to a
negative value for angular velocity, w. You can use an
example to show your point.

Answer



9 An object moves 11/2 radians in 8 s. What is its angular
velocity?

Answer



10What is the linear speed of a child on a merry-go-
round of radius 3.0 m that has an angular velocity of
4.0 rad/s?

A 12 m/s
B 0.75 m/s
C 1.3 m/s

D 10 m/s

Answer



11 What is the angular velocity of an object traveling in a
circle of radius 0.75 m with a linear speed of 3.5 m/s?

Answer



Angular Acceleration sign

Start with the definition of angular acceleration:

Aw
o =—
At

There are four cases here, all similar to the case of linear
acceleration. Can you figure them out?

Here's a hint - for linear acceleration, if an object's velocity is
increasing in the same direction of its displacement, the acceleration
IS positive.

If the object's velocity is decreasing in the direction of its
displacement, then its acceleration is negative.



Angular Acceleration sign

Here they are:

Aw
o =—
At

w increases in counter clockwise direction - a is positive
w decreases in the counter clockwise direction - a is negative

w Increases in clockwise direction - a is negative
w decreases in the clockwise direction - a is positive



12 What is the angular acceleration of a ball that starts at
rest and increases its angular velocity uniformly to 5 rad/s
in 10 s?

Answer



13 What is the angular velocity of a ball that starts at rest

and rolls for 5 s with a constant angular acceleration of
20 rad/s*?

A 10 rad/s
B 4 rad/s

C 7 rad/s

Answer

D 100 rad/s



Three types of Acceleration

So, we have two types of displacement, velocity and acceleration -
linear and angular.

However, this picture is not quite complete.

We learned about a third type of acceleration earlier.

What is it?



Three types of Acceleration

Centripetal! This was covered earlier in the Uniform Circular Motion
chapter - and you can go back to there to review if you'd like.

This is the acceleration that a point on a rotating disc feels that
keeps it moving in a circular direction.

a,=—
r
The v in the above equation is the v we've been working with, which
is the tangential velocity of an object located on a rotating object.

Up until now, we've just called it the linear velocity - but we're going
to need its tangential nature to discuss acceleration.



Three types of Acceleration

Look at the disc below which shows the linear acceleration that
we've defined as well as the centripetal acceleration.

But, centripetal acceleration is also linear! So we will rename the
linear acceleration we've been dealing with in this chapter as
tangential acceleration - as it is tangent to the rotating object.

The angular acceleration, q, is

a, a vector that points out of the
page. Don't worry about that
now - vectors pointing out of
the page will be covered in the
Electricity and Magnetism
section of this course - and in
AP C Mechanics.



Three types of Acceleration

We now have three accelerations associated with a rigid rotating
body: tangential, angular and centripetal, or a,, a, and a..

And they are all related to each other - can you express all three of
these accelerations in terms of the angular velocity of the rotating
object? Give it a try with these equations as a start:

a,=ro
2
Vv
a, =— Aw
r a=ra=r—
At
V=rw : ,
v ra
R GO
Look over here for the answer : r r
Aw
a=—



14 At which point is the magnitude of the centripetal
acceleration the greatest?

A A
B B
C C
D D

Answer



Total Linear Acceleration

There are two flavors of linear acceleration - tangential and
centripetal. They are perpendicular to each other, so what
mathematical equation would you use to sum them up for a total

linear acceleration?



Total Linear Acceleration

You take the vector sum: a,,,, =a, =a, +a,

and use the Pythagorean Theorem to find the magnitude of aia.

ClT :\/af +a02
)



15 A child pushes, with a constant force, a merry-go-round
with a radius of 2.5 m from rest to an angular velocity of
3.0 rad/s in 8.0 s. What is the merry-go-round's tangential
acceleration”?

A 0.25 m/s?

B 0.35 m/s? g
(7))
c

C 0.62 m/s> <

D 0.94 m/s?



16 A child pushes, with a constant force, a merry-go-round
with a radius of 2.5 m from rest to an angular velocity of
3.0 rad/s in 8.0 s. What is the merry-go-round's
centripetal acceleration att = 8.0s?

A 7.5 m/s?

B 19 m/s?

Answer

C 23 m/s?

D 46 m/s?



17 A child pushes, with a constant force, a merry-go-round
with a radius of 2.5 m from rest to an angular velocity of
3.0 rad/s in 8.0 s. What is the merry-go-round's total
linear acceleration at t = 8.0s?

Answer



18 A bear pushes, with a constant force, a circular rock with
a radius of 7.2 m from rest. The rock rotates with a
centripetal acceleration of 4.0 m/s? att =5.0 s. What is its
angular velocity att = 5.0 s?

A 0.65 rad/s ’g

7))
B 0.75 rad/s <
C 0.25rad/s

D 0.33 rad/s



19 A bear pushes, with a constant force, a circular rock with
a radius of 7.2 m from rest. The rock rotates with a
centripetal acceleration of 4.0 m/s® att=5.0 s. What is
its tangential acceleration att = 5.0 s?

Answer



20 A bear pushes, with a constant force, a circular rock with
a radius of 7.2 m from rest. The rock rotates with a
centripetal acceleration of 4.0 m/s® and a tangential
acceleration of 1.1 m/s? att = 5.0 s. What is its total linear
acceleration at that time?

A 1.3 m/s?

Answer

B 1.4 m/s?
C 3.1 m/s?

D 4.1 m/s?



Angular Velocity and Frequency

Frequency, f, is defined as the number of revolutions an object
makes per second and f = 1/T, where T is the period.

A rotating object moves through an angular displacement,
0 = 21r radians in one revolution - 1 period.

The linear velocity of any point on a rotating object is

:As:27rr:2mf
At T

v
This is very useful for solving rotational motion problems.

Try putting these facts together to derive a relationship
between angular velocity and frequency.



Angular Velocity and Frequency

V= As = 27r =27zrl: 2rrf
At T T
1% ro o
f — — —
2y 27r 2w
o=2rf

The angular velocity of a rotating object is equal to
211 times its frequency of rotation.



21 A tire with a radius of 4.0 m rolls with an angular velocity
of 8.0 rad/s. What is the frequency of the tire's
revolutions? What is its period?

Answer



22 A ball with a radius of 2.0 m rolls with a velocity of 3.0
m/s. What is the frequency of the ball's revolutions?
What is its period?

A 0.24revls 4.2s
B 0.24revis 84s
C 048revis 2.1s

D 048revis 4.2s

Answer



23 Four different objects rotate with the following
parameters. In which cases are the frequency of the
objects's revolutions identical? Select two answers.

Av=4m/s r=1m
Bv=8m/s r=2m

Cv=1m/s r=1m

Answer

Dv=3m/s r=6m



Rotational Kinematics

Return to Table
of Contents



Translational Kinematics

Now that all the definitions for rotational quantities have been
covered, we're almost ready to discuss the motion of rotating rigid
objects - Rotational Kinematics.

First, let's review the equations for translational kinematics - this was
one of the first topics that was covered in this course.

These equations are ONLY valid for cases involving a constant
acceleration.

This allows gravitational problems to be solved (a = g, a constant)
and makes it possible to solve kinematics equations without
advanced calculus. When acceleration changes, the problems are
more complex.



Translational Kinematics

Here are the equations. If you would like, please review their
derivations in the Kinematics section of this course.

v=y,+al
L 2
x=x0+vot+5at

v =v; +2alAx

v+,
2

v =



Rotational Kinematics

For each of the translational kinematics equations, there is an
equivalent rotational equation. We'll derive one of them and just
present the others - basically you just replace each translational
variable with its rotational analog.

v=y, +at
row =ra, +rat

w=w,+at



Rotational Kinematics

Here they are. We've been using As for linear displacement, but Ax
is just fine. Similarly to the translational equations, these only
work for constant angular acceleration.

@ =w, +at v=y,+at
| 1 ,
49:00+a)01+5at X=X, +V,l+—at
2 2
O =, +2aA 6 V2 :vg + 2al\x
_ o0+o,
@D = 0 V=V+%

2 2



Rolling Motion

The rotational motion equations also work as part of the
equations for rolling motion.

Rolling motion is simply rotational motion and linear motion
combined.

Think of a wheel on a car:
It is rotating, showing rotational motion.

It also moves forward as it rotates, therefore showing linear
motion.

Thus, we use the translational and rotational kinematics
equations to solve rolling motion problems.



24 A bicycle wheel with a radius of 0.30 m starts
from rest and accelerates at a rate of 4.5 rad/s?
for 11 s. What is its final angular velocity?

Answer



25 A bicycle wheel with a radius of 0.30 m starts from rest
and accelerates at a rate of 4.5 rad/s® for 11 s. What is
its final linear velocity?

A 20 m/s

B 15m/s .
S

C 10 m/s g

D 5m/s



26 A bicycle wheel with a radius of 0.300 m starts from rest
and accelerates at a rate of 4.50 rad/s” for 11.0 s. What is
its angular displacement during that time?

Answer



27 A bicycle wheel with a radius of 0.30 m starts from rest
and accelerates at a rate of 4.5 rad/s® for 11 s. How many
revolutions did it make during that time?

Answer



28 A bicycle wheel with a radius of 0.30 m starts from rest
and accelerates at a rate of 4.5 rad/s” for 11 s. What is
its linear displacement during that time?

A 40 m
B 82 m ;
C 160 m §

D 210 m



29 A 50.0 cm diameter wheel accelerates from 5.0
revolutions per second to 7.0 revolutions per second
in 8.0 s. What is its angular acceleration?

A 1T rad/s?
B 11/2 rad/s?
C 11/3 rad/s?

Answer

D 11/6 rad/s?



30 A 50.0 cm diameter wheel accelerates from 5.0
revolutions per second to 7.0 revolutions per second

iIn 8.0 s. What is its angular displacement during that
time?

Answer



31 A 50.0 cm diameter wheel accelerates uniformly from 5.0
revolutions per second to 7.0 revolutions per second in
8.0 seconds. What linear displacement, s, will a point on
the outside edge of the wheel have traveled during that
time?

Answer



Rotational Dynamics

Return to Table
of Contents



Rotational Dynamics

Just like there are rotational analogs for Kinematics, there are
rotational analogs for Dynamics.

Kinematics allowed us to solve for the motion of objects, without
caring why or how they moved.

Dynamics showed how the application of forces causes motion -
and this is summed up in Newton's Three Laws.

These laws also apply to rotational motion, but will be in a slightly
different format.



Torque

Forces underlie translational dynamics. A new term, related to
force, is the foundation of rotational motion. It is called Torque

>
N

The wrench is about to turn
the nut by a force applied at
point A. Will the nut turn, and
in which direction?

Consider the axis of rotation of
the nut to be through its center.




Torque

The nut will turn in a clockwise direction - recall that "left" and "right"
have no meaning in rotational motion. This is good - a force causes

motion from rest which implies an acceleration (but its an angular
acceleration, so it's a little new).

>
N

What if a force was applied |
to the nut at point B? The nut
Is attached to a bolt that is stuck

in the wall. Will the bolt rotate
or move?




Torque

No, it will not rotate or move at all. It makes sense that the nut
won't move translationally as the friction of the bolt and the wood

holding it is providing an equal and opposite force. But, it did
rotate when the force was applied at point A.

>
N

Assuming the same magnitude
force was applied at points A and
B, what is the difference between
the two cases? Why is it not
rotating now?

http://commons.wikimedia.org/wiki/File
o N .



Torque

The distance between where the force was applied and the axis
of rotation. When the force was applied at the axis of rotation,
the nut did not move.

There's just one more variable to consider for torque. Here's a
picture of a door (the horizontal line) and its door hinge (the dot).

Let's say you want to open the door by pushing it - rotating it
about the hinge. The magnitude of F;and F.is the same.

F Which force will cause

the door to open
® quicker (have a greater
angular acceleration)?




Torque

You've probably known this since you first started walking - F
gives the greater angular acceleration. Pushing perpendicular to
a line connecting the application of the force to the axis of
rotation results in the greater angular acceleration.

F2 It will also allow a smaller

force to have the same impact

@ as a greater force applied at
an angle different than 90°.




Torque

This combination of Force applied at a distance and an angle
from the axis of rotation that causes the angular acceleration is
called Torque, which is represented by the Greek letter tau:

T=rFsin@

Torque is a vector - the above F
equation shows the magnitude F>
of the torque. 0

~—

If the object rotates in a counter clockwise, the torque is positive.
Negative values of torque cause clockwise rotations.



Torque

The sin 6 takes into account that the closer the force is applied
perpendicular to the line connected to the axis of rotation results
in a greater torque - a greater angular acceleration. 0 is the
angle between the applied force and the line connecting it to the
axis of rotation.

T=rFsin@

F2

0
®

When you get to vector calculus, the equation becomes more
elegant involving the cross product:

T=rxF



Torque

The units of torque are Newton-meters.
T=rFsind

Note how this is similar to work and energy - and in those cases,
we replace N-m with Joules.

Torque, however is a vector.

How is this different from work and energy?

Work and energy are scalars. So, to
emphasize this difference, torque is never
expressed in terms of Joules.



32 Assume a force is applied perpendicular to the line
connecting it to the axis of rotation of the wrench-nut
system. At which point will the nut experience the
greatest torque?

D C A
, 2
Y B
B 7
c
<
C




33 A force of 300 N is applied to a crowbar 20 cm from
the axis of rotation, and perpendicular to the line
connecting it to the axis of rotation. Calculate the
magnitude of the torque.

A 50 N-m

B 60 N-m s
5

C 70 N-m z

D 80 N-m



34 A force of 300 N is applied to a crow bar 20 cm from
the axis of rotation at an angle of 25° to a line
connecting it to the axis of rotation. Calculate the
magnitude of the torque.

A 30 N-m
B 25 N-m
C 20 N-m

D 15 N-m

Answer



Torque Applications

Torque will be illustrated by three examples:
« Balancing masses
e Lever

e Screwdriver handle



Balance

Here is a balance with two masses
attached to it. Block A has a mass of
0.67 kg and is located 0.23 m from the

7y

pivot point. é

Block B has a mass of 1.2 kg. Where A
should it be located so that the balance

beam is perfectly horizontal and is not

moving?

Is this a translational motion or a
rotational motion problem?




See-Saw (balance)

Here's an artistic hint. The two boys on the left represent mass A
and the two slightly larger boys on the right represent mass B.

=

Winslow Horﬁer, "The See-Saw" 187:-’; 2

A side note - there are many connections between physics
and art - this would be a good project to research.



Balance

As with all Dynamics problem, let's start
with free body diagrams - but we'll take
the points on the balance beam that the
mass's are attached to:

A a I's B
I’éé'é'dﬁ 'é'é'éb'tT
Fa = mag Fs = mgg
t,=rJ sinf T, =—13F;sin6

iT e

Note the signs - mass A is
trying to rotate the beam
counterclockwise - so its
torque is positive. Mass B is
trying to rotate the beam
clockwise - negative torque;
we have a rotational problem.



Balance

This is a rotational motion problem, so in order to have the beam
not rotate, the sum of the torques applied to it must equal zero.

A r, s B
9=900° 9=9(Q0
o Ie 50 : 90‘[
rJ, sml@—r,F,sind=0
Fa=mag Fs = mgg

ram,g —rymyg =0

m, t,=rkF sinf T, =—r,F,sinf
r,=—=%r,

mB

0.67kg
ry = (0.23m)=0.13m

1.2kg



Balance and See-Saw

Again, many elementary school

students already know this! If you're on

a see-saw and you have to balance $
several students on the other side, you

position yourself further from the fulcrum A

than they are.




35 John and Sally are sitting on the opposite sides of a See-

Saw, both of them 5.0 m distant from the fulcrum. Sally
has a mass of 45 kg. What is the gravitational force on
John if the See-Saw is not moving? Use g = 10 m/s?.

A 450 N
B 400 N
C 350N

D 300N

Answer



36 A student wants to balance two masses of 2.00 kg and
0.500 kg on a meter stick. The 0.500 kg mass is
0.500 m from the fulcrum in the middle of the meter

stick. How far away should she put the 2.00 kg mass
from the fulcrum?

A 0.500 m
B 0.333m
C 0.250 m

Answer

D 0.125m



37 Sally wants to lift a 105 kg rock off the ground with a
3.00 m bar. She positions the bar on a fulcrum (a tree
log 1.00 m away from the rock) and wedges it under the
rock, at an angle of 45° with the ground. She exerts a
force of 612 N perpendicular to the ground. How far
away from the fulcrum should the force be applied to
move the rock? Use g = 10 m/s”.

Answer



38 Sally wants to lift a 105 kg rock off the ground with a
3.00 m bar. She positions the bar on a fulcrum (a tree
log 1.00 m away from the rock) and wedges it under the
rock, at an angle of 45° with the ground. She pushes on
the bar at a distance of 1.8 m away from the fulcrum and
starts moving the rock. Joe then comes by, and he
wants to try moving the rock, but he is not as strong as
Sally. What should he do? Select two answers.

Answer

A Push on the bar further from the fulcrum.
B Push on the bar closer to the fulcrum.
C Move the fulcrum closer to the rock.

D Move the fulcrum further away from the rock.



Lever

A remark attributed to Archimedes, "Give me a place to stand
and with a lever | will move the whole world," also applies to
torque. See how Archimedes has set the earth up so it is closer
to the fulcrum, reducing the amount of force he needed to exert
to move it (of course, this is a fanciful illustration).




Screwdriver handle

Here's a view of a screwdriver from the top - we're looking at the
handle, and the shank (that's the long thin part that connects the
handle to the tip which contacts the screw) of the screwdriver

goes into the page.

Assuming a constant force applied to both screwdrivers, which
one would turn the screw easier? Would a longer shank help?

O



Screwdriver handle

The force is applied perpendicular to the radius of the handle.
The forces are the same. Since r =rFsin@, the greater the
radius, the greater the torque, hence the greater angular
acceleration.

Screwdriver A is more effective. The length of the shank does

not matter (assuming it is perfectly rigid and does not bend or
deform under the force).

F F



39 Which statements regarding torque are true? Select two
answers.

A Torque is most commonly measured in N-m
B Torque is most commonly measured in J

C Torque is a vector

Answer

D Torque is the same as work and energy



Torque

Torque is the rotational analog to Force.

r=rFsin@

Newton's Second Law states that F = ma and has been applied
to point particles that don't rotate. We now want to analyze
extended rigid bodies that do rotate. Start with the force on one
small piece of the rigid body as it's rotating:

[}

ra  since ai=ra, where r; is the

distance between the small
piece of the object and the axis
of rotation

. =m.a.
m

Es BES
I



Torque

Assume that the force is applied perpendicular to the line
connected to the axis of rotation (sin6=1)

rF

1

Ti
7, =r,(mra) from the previous page

. =mria

i ii

Now sum up all the little pieces of the rigid body:
2T, =(Emirf)a’

Why was a factored out of the summation?

Because a is constant for all
points on the rigid object.



Moment of Inertia

This looks very similar to Newton's Second Law in translational

motion. 2F has been replaced by 21 and a has been replaced by

a. All good. But m has been replaced by 2mr2.

This is a new concept; it is called the Moment of Inertia, I.
[=3mr’

The mass of a given rigid object is always constant.

Can the same be said for the moment of inertia?



Moment of Inertia

No - it depends on the configuration of the rigid object, and
where its axis of rotation is located.

Now, here's Newton's Second Law for rotational motion.
xr=1a

where I=3mr’=mr’ +mpr, + mr, +---

If more of the little pieces of the rotating object are located

further away from the axis of rotation, then its moment of inertia

will be greater than an object of the same mass where more of
the mass is concentrated near the axis of rotation.



Here are various moments
of inertia for common objects.

All of the objects have the
same mass, M, but different
shapes and different axes of

rotation.

Take some time to see how
and why the moments of

inertia change.

Moment of Inertia

Hoop or am
cylindrical shell e 'b
I= MR?

Solid cylinder
or disk

I= 3 MR

Long thin rod
=1 are
I= is ML

Solid sphere
I= '3—’ MR?

Hollow cylinder
L= % M(R)* + Ry®) _

Rectangular plate
<t l 2 2
I= {5 Mia® + &%)

Long thin rod GF
I= 1 mr? /
3
L =
(=

Thin spherical
shell

Lo g
I=2 MR




Moment of Inertia

Mass is defined as the resistance of an object to accelerate due
to an applied force.

The moment of inertia is a measure of an object's resistance to
angular acceleration due to an applied torque.

The greater the moment of inertia of an object, the less it will
accelerate due to an applied torque.

The same torque is applied to a solid cylinder and a sphere,
each with the same mass and radius.

Which object will have a greater angular acceleration? You can
go back a slide to find their moments of inertia.



Moment of Inertia

Since the solid sphere has a smaller moment of inertia, it will
have a greater angular acceleration.

The angular acceleration can be different for the same object, if
a different axis of rotation is chosen.

If you want to rotate from rest, a long thin rod, where should you
hold the rod to make it easier to rotate?

It should be held in the middle. By rotating it
about that axis of rotation, the rod has a smaller
moment of inertia, so for a given torque, it will
have a greater angular acceleration - it will be
easier to rotate.



40 A child rolls a 0.02 kg hoop with an angular acceleration
of 10 rad/s®. If the hoop has a radius of 1 m, what is the
net torque on the hoop?

A 0.2 N-m L, = MR’
B 0.3 N-m

C 0.4 N-m

Answer

D 0.5 N-m



41 A construction worker spins a square sheet of metal of
mass 0.040 kg with an angular acceleration of 10.0 rad/s?
on a vertical spindle (pin). What are the dimensions of

the sheet if the net torque on the sheet is 1.00 N-m?

I :éM(a2+b2)

rect

Answer



Parallel Axis Theorem

If the moment of inertia about the center of mass of a rigid body
is known, the moment of inertia about any other axis of rotation
of the body can be calculated by use of the Parallel Axis
Theorem. Often, this simplifies the mathematics.

This theorem will be presented without proof:
I=1_+MD’

where D is the distance between the new axis of rotation from
the axis of rotation through the center of mass (), and M is the
total mass of the object.



Parallel Axis Theorem

Apply this theorem to the solid cylinder of mass M and radius R.

The moment of inertia when the cylinder is rotated about its center
of mass is | = 1/2 MR?. Find the moment of inertia when it is
rotated on an axis parallel to its central axis and at a distance, R.



Parallel Axis Theorem

I=1,+MD’

I =—MR?* + MR?

I ==—MR’®



42 Along thin rod, of length, L, when rotated about an axis
through its center of mass has a moment of inertia of
| = 1/12 ML®. What is its moment of inertia when rotated
about an axis through one of its endpoints?

D )

Answer



Rotational Kinetic
Energy

Return to Table
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Rotational Kinetic Energy

After Kinematics and Dynamics were covered, your physics
education was continued with the concept of Energy. Energy is
hard to define, but since it is a scalar quantity, it is great for
solving problems.

By now, you should be ready for the concept of a rotational
version of the translational kinetic energy.

Given that KE = 1/2 mv?2, what substitution should be made?



Rotational Kinetic Energy

Use the rotational equivalent of velocity and substitute it into the
Kinetic Energy equation. The first column shows where one
piece of a rotating object is being considered, and it is now a
rotational energy since v is replaced by w.

KE —lmv2
) Add up all the KEg's

1 for each small mass
KE, =—m, (”1”)2
2

1 1
1 —_ 2.2, 2024,
KERIZE P KE, 2mlrla) +2m2r20) +

KE, = %(Zmi"}z)wz

KE, = e
2



Work done by Torque

The concept of Work was introduced in parallel with Energy,
where W = FAdparaie

A shortcut will now be taken to determine how much work is
done by an applied torque - the rotational equivalents of force
and displacement will just be substituted into the above
equation:

W =1A0
What fell out of the original Work equation and why?

The angular nature of the equation. Torque
is, by definition, always perpendicular to the
angular displacement, so sin@ = 1, and
Work is the product of their amplitudes.



Total Kinetic Energy

This course has so far discussed three types of energy - GPE,
KE and EPE (Elastic Potential Energy).

All three of those were dealt with in terms of a point mass - there
was no rotation.

Now that we have rigid rotating bodies, KE will be redefined as a
total kinetic energy that sums up the translational and rotational
aspects.

KE

total

KE, =KE, + KE,

=KE

transiational

+ KE

rotational



Total Kinetic Energy

A common problem in rotational motion is having two different
objects, each with the same mass, and determining which will
get to the bottom of an incline first.

If they were just blocks, or even spheres that slid down without
rotating, they would get to the bottom at the same time, since
objects fall at the same rate.

By using an extended mass (not a point particle), and rotation,
it's quite different.

Why? Think about Energy. At the top of the ramp, both objects
have the same energy - it's all potential. How about at the
bottom?



Total Kinetic Energy

For a non rotating object, all of the gravitational potential energy
is transferred into translational kinetic energy. If the object
rotates, then part of that energy goes into rotational kinetic

energy.

Rotational kinetic energy depends on the shape of the object -
which affects the moment of inertia.

A sphere and a hoop of the same mass and radius both start at
rest, at the top of a ramp. Assume that both objects roll without
slipping, which one gets to the bottom first?



Total Kinetic Energy

Here's the sketch.

What is the equation, using the Conservation of Energy, that will
give the velocity of the objects at the bottom of the ramp? Solve the

equation. Qualitatively, how can that be used to determine which
object reaches the bottom first?

Try working this in your groups before going to the next slide.



Total Kinetic Energy

Hoop Sphere

(KE; +GPE), =(KE, +GPE)
(KE, +KE, + GPE), = (KE, + KE, + GPE)
GPE,=(KE, +KE,),
Mgh = lez + llaf
2 2

This equation works for both the hoop and
the sphere.



Total Kinetic Energy

Hoop Sphere

Mgh=—Mv’ +—Io’
2 2

Did you question why it was stated that the sphere and the
hoop roll without slipping? When that occurs, then v = rw.
We will use this fact to replace w in the above equation
with v/r.

If an object is sliding (slipping) without rotating, then this
isn't true. Why? Think of a car on an icy road - when the
driver hits the brakes quickly, what happens?



Total Kinetic Energy

The wheels lock up (although anti-lock brakes help to
minimize that), and the car wheels slip on the road. The
wheels don't rotate anymore - the car is just sliding.

So, the wheels have a translational velocity, v, but the
angular velocity of the wheels, w = 0. Clearly v # rw.

Back to the problem, where the substitution w = v/r will be
made in the rotational kinetic energy expression.



Total Kinetic Energy

Hoop

Hoop

Mgh = lez +llcz)2
2 2

1 1 v g
Moh =~ Mv* +—(MRH| ¥
=5 > )(R)

2

2eh=v" +V°

v Jah

Sphere

N\

Sphere

Mgh = L+ Li
2 2

1 1(2
Mgh=—Mv' + —| = MR’
2 2\5

2
2gh=v" +§v2

v=m:1.2\/g7

|

Vv



Total Kinetic Energy

Hoop Sphere

N\

The velocity of the sphere is 1.2 times as much as the velocity of the
hoop. Did that surprise you?

Qualitatively, that means that the sphere gets to the bottom of the
ramp first - because at any point on the incline, the sphere has a
greater velocity (h is just the height above ground). Solving the
kinematics equations would give the same answer.

One more question - why did this happen?



Total Kinetic Energy

Sphere

N\

Hoop

Both the sphere and the hoop started with the same GPE. And, at
the bottom of the ramp, both had zero GPE and a maximum KE -
again, both the same.

But - the hoop, with its greater moment of inertia, took a greater
amount of the total kinetic energy to make it rotate - so there was
less kinetic energy available for translational motion.

Hence, the sphere has a greater translational velocity than the hoop
and reaches the bottom first.



43 A spherical ball with a radius of 0.50 m rolls, without
slipping, down a 10.0 m high hill. What is the velocity of
the ball at the bottom of the hill? Use g = 10 m/s®.

I:EMRz
A 10 m/s 5
B 11 m/s
o
C 12 m/s 7
<

D 13 m/s



44 A solid cylinder with a radius of 0.50 m rolls, without
slipping, down a hill. What is the height of the hill if the
final velocity of the block is 10.0 m/s? Use g = 10 m/s®.

]:lMR2
2

Answer



45 Which change would lower the final velocity of a
spherical ball rolling down a hill? Select two answers.

A Changing the spherical ball to a solid cylinder
B Increasing the mass of the ball

C Decreasing the mass of the ball

Answer

D Decreasing the height of the hill



Angular Momentum

Return to Table
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Angular Momentum

As was done in the last chapter, we won't derive angular
momentum from linear momentum - we're just going to substitute
in the angular values for the linear (translational) ones.

Linear momentum (p): p=my

Angular momentum (L): L=1w



Conservation of Angular Momentum

The conservation of (linear) momentum states that in the
absence of external forces, momentum is conserved. This came
from the original statement of Newton's Second Law:

s =27
At

If there are no external forces, then:

sp-2P _
At
Ap=0

There is no change in momentum - it is conserved.



Conservation of Angular Momentum

Newton's Second Law (rotational version):

s AL
At

If there are no external torques, then:

_AL_
Al
AL =0

2T 0

There is no change in angular momentum - it is
conserved.



Conservation of Angular Momentum

The standard example used to illustrate the conservation of
angular momentum is the ice skater. Start by assuming a
frictionless surface - ice is pretty close to that - although if it were
totally frictionless, the skater would not be able to stand up and
skate!

The skater starts with his arms stretched out and spins around in
place. He then pulls in his arms.

What happens to his rotational velocity after he pulls in his
arms?

After you discuss this in your groups, please click on the below
and see if you were correct. Why did this happen?

Click here to see the ice skater in action


https://www.youtube.com/watch?v=MjYk5TRpOlE

Conservation of Angular Momentum

By assuming a nearly frictionless surface, that implies there is no
net external torque on the skater, so the conservation of angular
momentum can be used.

21:55:0
At
AL =0 The human body is not a rigid
I =T Sphere or a hoop or anything simple.
o But, knowing what the definition of
lyo, =10, moment of inertia is, at what point in
I, the spinning does the skater have a
W, =——0, greater moment of inertia?



Conservation of Angular Momentum

When the skater's arms are stretched out, more of his mass is
located further from his axis of rotation (the skates on the ice), so
he has a greater moment of inertia then when he tucks his arms

in. In the video, [ is greater than /. Thus, wsis greater than wy
and the skater rotates faster with his arms tucked in.



46 A 2.0 kg solid spherical ball with a radius of 0.20 m rolls
with an angular velocity of 5.0 rad/s down a street.
Magneto shrinks the radius of the ball down to 0.10 m,

but does not change the ball's mass and keeps it rolling.

What is the new angular velocity of the ball?

Answer



47 An ice skater extends her 0.5 m arms out and begins to
spin. Then she brings her arms back to her chest.

Which statements are true in this scenario? Select two
answers.

A She increases her angular velocity.

Answer

B She decreases her angular velocity.

C Her moment of inertia decreases as she brings her
arms in.

D Her moment of inertia increases as she brings her arms
In.
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